ACC SHELL
DOT12-RPTR-MIB DEFINITIONS ::= BEGIN
IMPORTS
mib-2, Integer32, Counter32, Counter64,
OBJECT-TYPE, MODULE-IDENTITY, NOTIFICATION-TYPE
FROM SNMPv2-SMI
MacAddress, TruthValue, TimeStamp
FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
FROM SNMPv2-CONF;
vgRptrMIB MODULE-IDENTITY
LAST-UPDATED "9705192256Z" -- May 19, 1997
ORGANIZATION "IETF 100VG-AnyLAN Working Group"
CONTACT-INFO
"WG E-mail: vgmib@hprnd.rose.hp.com
Chair: Jeff Johnson
Postal: RedBack Networks
2570 North First Street, Suite 410
San Jose, CA 95131
Tel: +1 408 571 2699
Fax: +1 408 571 2698
E-mail: jeff@redbacknetworks.com
Editor: John Flick
Postal: Hewlett Packard Company
8000 Foothills Blvd. M/S 5556
Roseville, CA 95747-5556
Tel: +1 916 785 4018
Fax: +1 916 785 3583
E-mail: johnf@hprnd.rose.hp.com"
DESCRIPTION
"This MIB module describes objects for managing
IEEE 802.12 repeaters."
::= { mib-2 53 }
vgRptrObjects OBJECT IDENTIFIER ::= { vgRptrMIB 1 }
vgRptrBasic OBJECT IDENTIFIER ::= { vgRptrObjects 1 }
vgRptrBasicRptr OBJECT IDENTIFIER ::= { vgRptrBasic 1 }
vgRptrInfoTable OBJECT-TYPE
SYNTAX SEQUENCE OF VgRptrInfoEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of information about each 802.12 repeater
in the managed system."
::= { vgRptrBasicRptr 1 }
vgRptrInfoEntry OBJECT-TYPE
SYNTAX VgRptrInfoEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the table, containing information
about a single repeater."
INDEX { vgRptrInfoIndex }
::= { vgRptrInfoTable 1 }
VgRptrInfoEntry ::=
SEQUENCE {
vgRptrInfoIndex Integer32,
vgRptrInfoMACAddress MacAddress,
vgRptrInfoCurrentFramingType INTEGER,
vgRptrInfoDesiredFramingType INTEGER,
vgRptrInfoFramingCapability INTEGER,
vgRptrInfoTrainingVersion INTEGER,
vgRptrInfoOperStatus INTEGER,
vgRptrInfoReset INTEGER,
vgRptrInfoLastChange TimeStamp
}
vgRptrInfoIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A unique identifier for the repeater for which
this entry contains information. The numbering
scheme for repeaters is implementation specific."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.2.1,
aRepeaterID."
::= { vgRptrInfoEntry 1 }
vgRptrInfoMACAddress OBJECT-TYPE
SYNTAX MacAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The MAC address used by the repeater when it
initiates training on the uplink port. Repeaters
are allowed to train with an assigned MAC address
or a null (all zeroes) MAC address."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.2.1,
aMACAddress."
::= { vgRptrInfoEntry 2 }
vgRptrInfoCurrentFramingType OBJECT-TYPE
SYNTAX INTEGER {
frameType88023(1),
frameType88025(2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The type of framing (802.3 or 802.5) currently
in use by the repeater."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.2.1,
aCurrentFramingType."
::= { vgRptrInfoEntry 3 }
vgRptrInfoDesiredFramingType OBJECT-TYPE
SYNTAX INTEGER {
frameType88023(1),
frameType88025(2)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The type of framing which will be used by the
repeater after the next time it is reset.
The value of this object should be preserved
across repeater resets and power failures."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.2.1,
aDesiredFramingType."
::= { vgRptrInfoEntry 4 }
vgRptrInfoFramingCapability OBJECT-TYPE
SYNTAX INTEGER {
frameType88023(1),
frameType88025(2),
frameTypeEither(3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The type of framing this repeater is capable of
supporting."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.2.1,
aFramingCapability."
::= { vgRptrInfoEntry 5 }
vgRptrInfoTrainingVersion OBJECT-TYPE
SYNTAX INTEGER (0..7)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The highest version bits (vvv bits) supported by
the repeater during training."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.2.1,
aRMACVersion."
::= { vgRptrInfoEntry 6 }
vgRptrInfoOperStatus OBJECT-TYPE
SYNTAX INTEGER {
other(1),
ok(2),
generalFailure(3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The vgRptrInfoOperStatus object indicates the
operational state of the repeater."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.2.1,
aRepeaterHealthState."
::= { vgRptrInfoEntry 7 }
vgRptrInfoReset OBJECT-TYPE
SYNTAX INTEGER {
noReset(1),
reset(2)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Setting this object to reset(2) causes the
repeater to transition to its initial state as
specified in clause 12 [IEEE Std 802.12].
Setting this object to noReset(1) has no effect.
The agent will always return the value noReset(1)
when this object is read.
After receiving a request to set this variable to
reset(2), the agent is allowed to delay the reset
for a short period. For example, the implementor
may choose to delay the reset long enough to
allow the SNMP response to be transmitted. In
any event, the SNMP response must be transmitted.
This action does not reset the management
counters defined in this document nor does it
affect the vgRptrPortAdminStatus parameters.
Included in this action is the execution of a
disruptive Self-Test with the following
characteristics:
1) The nature of the tests is not specified.
2) The test resets the repeater but without
affecting configurable management
information about the repeater.
3) Packets received during the test may or
may not be transferred.
4) The test does not interfere with
management functions.
After performing this self-test, the agent will
update the repeater health information (including
vgRptrInfoOperStatus), and send a
vgRptrResetEvent."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.2.2,
acResetRepeater."
::= { vgRptrInfoEntry 8 }
vgRptrInfoLastChange OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when any of the following
conditions occurred:
1) agent cold- or warm-started;
2) this instance of repeater was created
(such as when a device or module was
added to the system);
3) a change in the value of
vgRptrInfoOperStatus;
4) ports were added or removed as members of
the repeater; or
5) any of the counters associated with this
repeater had a discontinuity."
::= { vgRptrInfoEntry 9 }
vgRptrBasicGroup OBJECT IDENTIFIER ::= { vgRptrBasic 2 }
vgRptrBasicGroupTable OBJECT-TYPE
SYNTAX SEQUENCE OF VgRptrBasicGroupEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table containing information about groups of
ports."
::= { vgRptrBasicGroup 1 }
vgRptrBasicGroupEntry OBJECT-TYPE
SYNTAX VgRptrBasicGroupEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the vgRptrBasicGroupTable, containing
information about a single group of ports."
INDEX { vgRptrGroupIndex }
::= { vgRptrBasicGroupTable 1 }
VgRptrBasicGroupEntry ::=
SEQUENCE {
vgRptrGroupIndex Integer32,
vgRptrGroupObjectID OBJECT IDENTIFIER,
vgRptrGroupOperStatus INTEGER,
vgRptrGroupPortCapacity Integer32,
vgRptrGroupCablesBundled INTEGER
}
vgRptrGroupIndex OBJECT-TYPE
SYNTAX Integer32 (1..2146483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This object identifies the group within the
system for which this entry contains information.
The numbering scheme for groups is implementation
specific."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.4.1,
aGroupID."
::= { vgRptrBasicGroupEntry 1 }
vgRptrGroupObjectID OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The vendor's authoritative identification of the
group. This value may be allocated within the
SMI enterprises subtree (1.3.6.1.4.1) and
provides a straight-forward and unambiguous means
for determining what kind of group is being
managed.
For example, this object could take the value
1.3.6.1.4.1.4242.1.2.14 if vendor 'Flintstones,
Inc.' was assigned the subtree 1.3.6.1.4.1.4242,
and had assigned the identifier
1.3.6.1.4.1.4242.1.2.14 to its 'Wilma Flintstone
6-Port Plug-in Module.'"
::= { vgRptrBasicGroupEntry 2 }
vgRptrGroupOperStatus OBJECT-TYPE
SYNTAX INTEGER {
other(1),
operational(2),
malfunctioning(3),
notPresent(4),
underTest(5),
resetInProgress(6)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An object that indicates the operational status
of the group.
A status of notPresent(4) indicates that the
group is temporarily or permanently physically
and/or logically not a part of the system. It
is an implementation-specific matter as to
whether the agent effectively removes notPresent
entries from the table.
A status of operational(2) indicates that the
group is functioning, and a status of
malfunctioning(3) indicates that the group is
malfunctioning in some way."
::= { vgRptrBasicGroupEntry 3 }
vgRptrGroupPortCapacity OBJECT-TYPE
SYNTAX Integer32 (1..2146483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The vgRptrGroupPortCapacity is the number of
ports that can be contained within the group.
Valid range is 1-2147483647. Within each group,
the ports are uniquely numbered in the range from
1 to vgRptrGroupPortCapacity.
Some ports may not be present in the system, in
which case the actual number of ports present will
be less than the value of vgRptrGroupPortCapacity.
The number of ports present is never greater than
the value of vgRptrGroupPortCapacity.
Note: In practice, this will generally be the
number of ports on a module, card, or board, and
the port numbers will correspond to numbers marked
on the physical embodiment."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.4.1,
aGroupPortCapacity."
::= { vgRptrBasicGroupEntry 4 }
vgRptrGroupCablesBundled OBJECT-TYPE
SYNTAX INTEGER {
someCablesBundled(1),
noCablesBundled(2)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object is used to indicate whether there are
any four-pair UTP links connected to this group
that are contained in a cable bundle with multiple
four-pair groups (e.g. a 25-pair bundle). Bundled
cable may only be used for repeater-to-end node
links where the end node is not in promiscuous
mode.
When a broadcast or multicast packet is received
from a port on this group that is not a
promiscuous or cascaded port, the packet will be
buffered completely before being repeated if
this object is set to 'someCablesBundled(1)'.
When this object is equal to 'noCablesBundled(2)',
all packets received from ports on this group will
be repeated as the frame is being received.
Note that the value 'someCablesBundled(1)' will
work in the vast majority of all installations,
regardless of whether or not any cables are
physically in a bundle, since packets received
from promiscuous and cascaded ports automatically
avoid the store and forward. The main situation
in which 'noCablesBundled(2)' is beneficial is
when there is a large amount of multicast traffic
and the cables are not in a bundle.
The value of this object should be preserved
across repeater resets and power failures."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.4.1,
aGroupCablesBundled."
::= { vgRptrBasicGroupEntry 5 }
vgRptrBasicPort OBJECT IDENTIFIER ::= { vgRptrBasic 3 }
vgRptrBasicPortTable OBJECT-TYPE
SYNTAX SEQUENCE OF VgRptrBasicPortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table containing configuration and status
information about 802.12 repeater ports in the
system. The number of entries is independent of
the number of repeaters in the managed system."
::= { vgRptrBasicPort 1 }
vgRptrBasicPortEntry OBJECT-TYPE
SYNTAX VgRptrBasicPortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the vgRptrBasicPortTable, containing
information about a single port."
INDEX { vgRptrGroupIndex, vgRptrPortIndex }
::= { vgRptrBasicPortTable 1 }
VgRptrBasicPortEntry ::=
SEQUENCE {
vgRptrPortIndex Integer32,
vgRptrPortType INTEGER,
vgRptrPortAdminStatus INTEGER,
vgRptrPortOperStatus INTEGER,
vgRptrPortSupportedPromiscMode INTEGER,
vgRptrPortSupportedCascadeMode INTEGER,
vgRptrPortAllowedTrainType INTEGER,
vgRptrPortLastTrainConfig OCTET STRING,
vgRptrPortTrainingResult OCTET STRING,
vgRptrPortPriorityEnable TruthValue,
vgRptrPortRptrInfoIndex Integer32
}
vgRptrPortIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This object identifies the port within the group
for which this entry contains information. This
identifies the port independently from the
repeater it may be attached to. The numbering
scheme for ports is implementation specific;
however, this value can never be greater than
vgRptrGroupPortCapacity for the associated group."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aPortID."
::= { vgRptrBasicPortEntry 1 }
vgRptrPortType OBJECT-TYPE
SYNTAX INTEGER {
cascadeExternal(1),
cascadeInternal(2),
localExternal(3),
localInternal(4)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Describes the type of port. One of the
following:
cascadeExternal - Port is an uplink with
physical connections which
are externally visible
cascadeInternal - Port is an uplink with
physical connections which
are not externally visible,
such as a connection to an
internal backplane in a
chassis
localExternal - Port is a downlink or local
port with externally
visible connections
localInternal - Port is a downlink or local
port with connections which
are not externally visible,
such as a connection to an
internal agent
'internal' is used to identify ports which place
traffic into the repeater, but do not have any
external connections. Note that both DTE and
cascaded repeater downlinks are considered
'local' ports."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aPortType."
::= { vgRptrBasicPortEntry 2 }
vgRptrPortAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
enabled(1),
disabled(2)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Port enable/disable function. Enabling a
disabled port will cause training to be
initiated by the training initiator (the slave
mode device) on the link. Setting this object to
disabled(2) disables the port.
A disabled port neither transmits nor receives.
Once disabled, a port must be explicitly enabled
to restore operation. A port which is disabled
when power is lost or when a reset is exerted
shall remain disabled when normal operation
resumes.
The value of this object should be preserved
across repeater resets and power failures."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aPortAdministrativeState."
::= { vgRptrBasicPortEntry 3 }
vgRptrPortOperStatus OBJECT-TYPE
SYNTAX INTEGER {
active(1),
inactive(2),
training(3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Current status for the port as specified by the
PORT_META_STATE in the port process module of
clause 12 [IEEE Std 802.12].
During initialization or any link warning
conditions, vgRptrPortStatus will be
'inactive(2)'.
When Training_Up is received by the repeater on a
local port (or when Training_Down is received on
a cascade port), vgRptrPortStatus will change to
'training(3)' and vgRptrTrainingResult can be
monitored to see the detailed status regarding
training.
When 24 consecutive good FCS packets are exchanged
and the configuration bits are OK,
vgRptrPortStatus will change to 'active(1)'.
A disabled port shall have a port status of
'inactive(2)'."
REFERENCE
"IEEE Standard 802.12, 13.2.4.5.1,
aPortStatus."
::= { vgRptrBasicPortEntry 4 }
vgRptrPortSupportedPromiscMode OBJECT-TYPE
SYNTAX INTEGER {
singleModeOnly(1),
singleOrPromiscMode(2),
promiscModeOnly(3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object describes whether the port hardware
is capable of supporting promiscuous mode, single
address mode (i.e., repeater filters unicasts not
addressed to the end station attached to this
port), or both. A port for which vgRptrPortType
is equal to 'cascadeInternal' or 'cascadeExternal'
will always have a value of 'promiscModeOnly' for
this object."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aSupportedPromiscMode."
::= { vgRptrBasicPortEntry 5 }
vgRptrPortSupportedCascadeMode OBJECT-TYPE
SYNTAX INTEGER {
endNodesOnly(1),
endNodesOrRepeaters(2),
cascadePort(3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object describes whether the port hardware
is capable of supporting cascaded repeaters, end
nodes, or both. A port for which vgRptrPortType
is equal to 'cascadeInternal' or
'cascadeExternal' will always have a value of
'cascadePort' for this object."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aSupportedCascadeMode."
::= { vgRptrBasicPortEntry 6 }
vgRptrPortAllowedTrainType OBJECT-TYPE
SYNTAX INTEGER {
allowEndNodesOnly(1),
allowPromiscuousEndNodes(2),
allowEndNodesOrRepeaters(3),
allowAnything(4)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This security object is set by the network
manager to configure what type of device is
permitted to connect to the port. One of the
following values:
allowEndNodesOnly - only non-
promiscuous end
nodes permitted.
allowPromiscuousEndNodes - promiscuous or
non-promiscuous
end nodes
permitted
allowEndNodesOrRepeaters - repeaters or non-
promiscuous end
nodes permitted
allowAnything - repeaters,
promiscuous or
non-promiscuous
end nodes
permitted
For a port for which vgRptrPortType is equal to
'cascadeInternal' or 'cascadeExternal', the
corresponding instance of this object may not be
set to 'allowEndNodesOnly' or
'allowPromiscuousEndNodes'.
The agent must reject a SET of this object if the
value includes no capabilities that are
supported by this port's hardware, as defined by
the values of the corresponding instances of
vgRptrPortSupportedPromiscMode and
vgRptrPortSupportedCascadeMode.
Note that vgRptrPortSupportPromiscMode and
vgRptrPortSupportedCascadeMode represent what the
port hardware is capable of supporting.
vgRptrPortAllowedTrainType is used for setting an
administrative policy for a port. The actual set
of training configurations that will be allowed
to succeed on a port is the intersection of what
the hardware will support and what is
administratively allowed. The above requirement
on what values may be set to this object says that
the intersection of what is supported and what is
allowed must be non-empty. In other words, it
must not result in a situation in which nothing
would be allowed to train on that port. However,
a value can be set to this object as long as the
combination of this object and what is supported
by the hardware would still leave at least one
configuration that could successfully train on the
port.
The value of this object should be preserved
across repeater resets and power failures."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aAllowableTrainingType."
::= { vgRptrBasicPortEntry 7 }
vgRptrPortLastTrainConfig OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(2))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a 16 bit field. For local ports,
this object contains the requested configuration
field from the most recent error-free training
request frame sent by the device connected to
the port. For cascade ports, this object contains
the responder's allowed configuration field from
the most recent error-free training response frame
received in response to training initiated by this
repeater. The format of the current version of
this field is described in section 3.2. Please
refer to the most recent version of the IEEE
802.12 standard for the most up-to-date definition
of the format of this object."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aLastTrainingConfig."
::= { vgRptrBasicPortEntry 8 }
vgRptrPortTrainingResult OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(3))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This 18 bit field is used to indicate the result
of training. It contains two bits which indicate
if error-free training frames have been received,
and it also contains the 16 bits of the allowed
configuration field from the most recent
error-free training response frame on the port.
First Octet: Second and Third Octets:
7 6 5 4 3 2 1 0
+-+-+-+-+-+-+-+-+-----------------------------+
|0|0|0|0|0|0|V|G| allowed configuration field |
+-+-+-+-+-+-+-+-+-----------------------------+
V: Valid: set when at least one error-free
training frame has been received.
Indicates the 16 training configuration
bits in vgRptrPortLastTrainConfig and
vgRptrPortTrainingResult contain valid
information. This bit is cleared when
vgRptrPortStatus transitions to the
'inactive' or 'training' state.
G: LinkGood: indicates the link hardware is
OK. Set if 24 consecutive error-free
training packets have been exchanged.
Cleared when a training packet with
errors is received, or when
vgRptrPortStatus transitions to the
'inactive' or 'training' state.
The format of the current version of the allowed
configuration field is described in section 3.2.
Please refer to the most recent version of the
IEEE 802.12 standard for the most up-to-date
definition of the format of this field.
If the port is in training, a management station
can examine this object to see if any training
packets have been passed successfully. If there
have been any good training packets, the Valid
bit will be set and the management station can
examine the allowed configuration field to see if
there is a duplicate address, configuration, or
security problem.
Note that on a repeater local port, this repeater
generates the training response bits, while on
a cascade port, the device at the upper end of
the link originated the training response bits."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aTrainingResult."
::= { vgRptrBasicPortEntry 9 }
vgRptrPortPriorityEnable OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"A configuration flag used to determine whether
the repeater will service high priority requests
received on the port as high priority or normal
priority. When 'false', high priority requests
on this port will be serviced as normal priority.
The setting of this object has no effect on a
cascade port. Also note that the setting of this
object has no effect on a port connected to a
cascaded repeater. In both of these cases, this
setting is treated as always 'true'. The value
'false' only has an effect when the port is a
localInternal or localExternal port connected to
an end node.
The value of this object should be preserved
across repeater resets and power failures."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aPriorityEnable."
::= { vgRptrBasicPortEntry 10 }
vgRptrPortRptrInfoIndex OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object identifies the repeater that this
port is currently mapped to. The repeater
identified by a particular value of this object
is the same as that identified by the same value
of vgRptrInfoIndex. A value of zero indicates
that this port is not currently mapped to any
repeater."
::= { vgRptrBasicPortEntry 11 }
vgRptrMonitor OBJECT IDENTIFIER ::= { vgRptrObjects 2 }
vgRptrMonRepeater OBJECT IDENTIFIER ::= { vgRptrMonitor 1 }
vgRptrMonitorTable OBJECT-TYPE
SYNTAX SEQUENCE OF VgRptrMonitorEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of performance and error statistics for
each repeater in the system. The instance of the
vgRptrInfoLastChange associated with a repeater
is used to indicate possible discontinuities of
the counters in this table that are associated
with the same repeater."
::= { vgRptrMonRepeater 1 }
vgRptrMonitorEntry OBJECT-TYPE
SYNTAX VgRptrMonitorEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the table, containing statistics
for a single repeater."
INDEX { vgRptrInfoIndex }
::= { vgRptrMonitorTable 1 }
VgRptrMonitorEntry ::=
SEQUENCE {
vgRptrMonTotalReadableFrames Counter32,
vgRptrMonTotalReadableOctets Counter32,
vgRptrMonReadableOctetRollovers Counter32,
vgRptrMonHCTotalReadableOctets Counter64,
vgRptrMonTotalErrors Counter32
}
vgRptrMonTotalReadableFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of good frames of valid frame
length that have been received on all ports in
this repeater. If an implementation cannot
obtain a count of frames as seen by the repeater
itself, this counter may be implemented as the
summation of the values of the
vgRptrPortReadableFrames counters for all of the
ports in this repeater.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrInfoLastChange changes."
::= { vgRptrMonitorEntry 1 }
vgRptrMonTotalReadableOctets OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of octets contained in good
frames that have been received on all ports in
this repeater. If an implementation cannot
obtain a count of octets as seen by the repeater
itself, this counter may be implemented as the
summation of the values of the
vgRptrPortReadableOctets counters for all of the
ports in this repeater.
Note that this counter can roll over very
quickly. A management station is advised to
also poll the vgRptrReadableOctetRollovers
object, or to use the 64-bit counter defined by
vgRptrMonHCTotalReadableOctets instead of the
two 32-bit counters.
This two-counter mechanism is provided for those
network management protocols that do not support
64-bit counters (e.g. SNMPv1). Note that
retrieval of these two counters in the same PDU
is NOT guaranteed to be atomic.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrInfoLastChange changes."
::= { vgRptrMonitorEntry 2 }
vgRptrMonReadableOctetRollovers OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of times that the associated
instance of the vgRptrMonTotalReadableOctets
counter has rolled over.
This two-counter mechanism is provided for those
network management protocols that do not support
64-bit counters (e.g. SNMPv1). Note that
retrieval of these two counters in the same PDU
is NOT guaranteed to be atomic.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrInfoLastChange changes."
::= { vgRptrMonitorEntry 3 }
vgRptrMonHCTotalReadableOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of octets contained in good
frames that have been received on all ports in
this repeater. If an implementation cannot
obtain a count of octets as seen by the repeater
itself, this counter may be implemented as the
summation of the values of the
vgRptrPortHCReadableOctets counters for all of the
ports in this repeater.
This counter is a 64 bit version of
vgRptrMonTotalReadableOctets. It should be used
by Network Management protocols which support 64
bit counters (e.g. SNMPv2).
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrInfoLastChange changes."
::= { vgRptrMonitorEntry 4 }
vgRptrMonTotalErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of errors which have occurred on
all of the ports in this repeater. If an
implementation cannot obtain a count of these
errors as seen by the repeater itself, this
counter may be implemented as the summation of the
values of the vgRptrPortIPMFrames,
vgRptrPortOversizeFrames, and
vgRptrPortDataErrorFrames counters for all of the
ports in this repeater.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrInfoLastChange changes."
::= { vgRptrMonitorEntry 5 }
vgRptrMonGroup OBJECT IDENTIFIER ::= { vgRptrMonitor 2 }
-- Currently unused
vgRptrMonPort OBJECT IDENTIFIER ::= { vgRptrMonitor 3 }
vgRptrMonPortTable OBJECT-TYPE
SYNTAX SEQUENCE OF VgRptrMonPortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of performance and error statistics for
the ports. The columnar object
vgRptrPortLastChange is used to indicate possible
discontinuities of counter type columnar objects
in this table."
::= { vgRptrMonPort 1 }
vgRptrMonPortEntry OBJECT-TYPE
SYNTAX VgRptrMonPortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the vgRptrMonPortTable, containing
performance and error statistics for a single
port."
INDEX { vgRptrGroupIndex, vgRptrPortIndex }
::= { vgRptrMonPortTable 1 }
VgRptrMonPortEntry ::=
SEQUENCE {
vgRptrPortReadableFrames Counter32,
vgRptrPortReadableOctets Counter32,
vgRptrPortReadOctetRollovers Counter32,
vgRptrPortHCReadableOctets Counter64,
vgRptrPortUnreadableOctets Counter32,
vgRptrPortUnreadOctetRollovers Counter32,
vgRptrPortHCUnreadableOctets Counter64,
vgRptrPortHighPriorityFrames Counter32,
vgRptrPortHighPriorityOctets Counter32,
vgRptrPortHighPriOctetRollovers Counter32,
vgRptrPortHCHighPriorityOctets Counter64,
vgRptrPortNormPriorityFrames Counter32,
vgRptrPortNormPriorityOctets Counter32,
vgRptrPortNormPriOctetRollovers Counter32,
vgRptrPortHCNormPriorityOctets Counter64,
vgRptrPortBroadcastFrames Counter32,
vgRptrPortMulticastFrames Counter32,
vgRptrPortNullAddressedFrames Counter32,
vgRptrPortIPMFrames Counter32,
vgRptrPortOversizeFrames Counter32,
vgRptrPortDataErrorFrames Counter32,
vgRptrPortPriorityPromotions Counter32,
vgRptrPortTransitionToTrainings Counter32,
vgRptrPortLastChange TimeStamp
}
vgRptrPortReadableFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is the number of good frames of
valid frame length that have been received on
this port. This counter is incremented by one
for each frame received on the port which is not
counted by any of the following error counters:
vgRptrPortIPMFrames, vgRptrPortOversizeFrames,
vgRptrPortNullAddressedFrames, or
vgRptrPortDataErrorFrames.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aReadableFramesReceived."
::= { vgRptrMonPortEntry 1 }
vgRptrPortReadableOctets OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of octets
contained in good frames that have been received
on this port. This counter is incremented by
OctetCount for each frame received on this port
which has been determined to be a readable frame
(i.e. each frame counted by
vgRptrPortReadableFrames).
Note that this counter can roll over very
quickly. A management station is advised to
also poll the vgRptrPortReadOctetRollovers
object, or to use the 64-bit counter defined by
vgRptrPortHCReadableOctets instead of the two
32-bit counters.
This two-counter mechanism is provided for those
network management protocols that do not support
64-bit counters (e.g. SNMPv1). Note that
retrieval of these two counters in the same PDU
is NOT guaranteed to be atomic.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aReadableOctetsReceived."
::= { vgRptrMonPortEntry 2 }
vgRptrPortReadOctetRollovers OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of times
that the associated instance of the
vgRptrPortReadableOctets counter has rolled over.
This two-counter mechanism is provided for those
network management protocols that do not support
64-bit counters (e.g. SNMPv1). Note that
retrieval of these two counters in the same PDU
is NOT guaranteed to be atomic.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aReadableOctetsReceived."
::= { vgRptrMonPortEntry 3 }
vgRptrPortHCReadableOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of octets
contained in good frames that have been received
on this port. This counter is incremented by
OctetCount for each frame received on this port
which has been determined to be a readable frame
(i.e. each frame counted by
vgRptrPortReadableFrames).
This counter is a 64 bit version of
vgRptrPortReadableOctets. It should be used by
Network Management protocols which support 64 bit
counters (e.g. SNMPv2).
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aReadableOctetsReceived."
::= { vgRptrMonPortEntry 4 }
vgRptrPortUnreadableOctets OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of octets
contained in invalid frames that have been
received on this port. This counter is
incremented by OctetCount for each frame received
on this port which is counted by
vgRptrPortIPMFrames, vgRptrPortOversizeFrames,
vgRptrPortNullAddressedFrames, or
vgRptrPortDataErrorFrames. This counter can be
combined with vgRptrPortReadableOctets to
calculate network utilization.
Note that this counter can roll over very
quickly. A management station is advised to
also poll the vgRptrPortUnreadOctetRollovers
object, or to use the 64-bit counter defined by
vgRptrPortHCUnreadableOctets instead of the two
32-bit counters.
This two-counter mechanism is provided for those
network management protocols that do not support
64-bit counters (e.g. SNMPv1). Note that
retrieval of these two counters in the same PDU
is NOT guaranteed to be atomic.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aOctetsInUnreadableFramesRcvd."
::= { vgRptrMonPortEntry 5 }
vgRptrPortUnreadOctetRollovers OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of times
that the associated instance of the
vgRptrPortUnreadableOctets counter has rolled
over.
This two-counter mechanism is provided for those
network management protocols that do not support
64-bit counters (e.g. SNMPv1). Note that
retrieval of these two counters in the same PDU
is NOT guaranteed to be atomic.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aOctetsInUnreadableFramesRcvd."
::= { vgRptrMonPortEntry 6 }
vgRptrPortHCUnreadableOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of octets
contained in invalid frames that have been
received on this port. This counter is
incremented by OctetCount for each frame received
on this port which is counted by
vgRptrPortIPMFrames, vgRptrPortOversizeFrames,
vgRptrPortNullAddressedFrames, or
vgRptrPortDataErrorFrames. This counter can be
combined with vgRptrPortHCReadableOctets to
calculate network utilization.
This counter is a 64 bit version of
vgRptrPortUnreadableOctets. It should be used
by Network Management protocols which support 64
bit counters (e.g. SNMPv2).
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aOctetsInUnreadableFramesRcvd."
::= { vgRptrMonPortEntry 7 }
vgRptrPortHighPriorityFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of high priority frames
that have been received on this port. This
counter is incremented by one for each high
priority frame received on this port. This
counter includes both good and bad high priority
frames, as well as high priority training frames.
This counter does not include normal priority
frames which were priority promoted.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aHighPriorityFramesReceived."
::= { vgRptrMonPortEntry 8 }
vgRptrPortHighPriorityOctets OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of octets
contained in high priority frames that have been
received on this port. This counter is
incremented by OctetCount for each frame received
on this port which is counted by
vgRptrPortHighPriorityFrames.
Note that this counter can roll over very
quickly. A management station is advised to
also poll the vgRptrPortHighPriOctetRollovers
object, or to use the 64-bit counter defined by
vgRptrPortHCHighPriorityOctets instead of the two
32-bit counters.
This two-counter mechanism is provided for those
network management protocols that do not support
64-bit counters (e.g. SNMPv1). Note that
retrieval of these two counters in the same PDU
is NOT guaranteed to be atomic.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aHighPriorityOctetsReceived."
::= { vgRptrMonPortEntry 9 }
vgRptrPortHighPriOctetRollovers OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of times
that the associated instance of the
vgRptrPortHighPriorityOctets counter has rolled
over.
This two-counter mechanism is provided for those
network management protocols that do not support
64-bit counters (e.g. SNMPv1). Note that
retrieval of these two counters in the same PDU
is NOT guaranteed to be atomic.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aHighPriorityOctetsReceived."
::= { vgRptrMonPortEntry 10 }
vgRptrPortHCHighPriorityOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of octets
contained in high priority frames that have been
received on this port. This counter is
incremented by OctetCount for each frame received
on this port which is counted by
vgRptrPortHighPriorityFrames.
This counter is a 64 bit version of
vgRptrPortHighPriorityOctets. It should be used
by Network Management protocols which support
64 bit counters (e.g. SNMPv2).
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aHighPriorityOctetsReceived."
::= { vgRptrMonPortEntry 11 }
vgRptrPortNormPriorityFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of normal priority frames
that have been received on this port. This
counter is incremented by one for each normal
priority frame received on this port. This
counter includes both good and bad normal
priority frames, as well as normal priority
training frames and normal priority frames which
were priority promoted.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aNormalPriorityFramesReceived."
::= { vgRptrMonPortEntry 12 }
vgRptrPortNormPriorityOctets OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of octets
contained in normal priority frames that have
been received on this port. This counter is
incremented by OctetCount for each frame received
on this port which is counted by
vgRptrPortNormPriorityFrames.
Note that this counter can roll over very
quickly. A management station is advised to
also poll the vgRptrPortNormPriOctetRollovers
object, or to use the 64-bit counter defined by
vgRptrPortHCNormPriorityOctets instead of the two
32-bit counters.
This two-counter mechanism is provided for those
network management protocols that do not support
64-bit counters (e.g. SNMPv1). Note that
retrieval of these two counters in the same PDU
is NOT guaranteed to be atomic.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aNormalPriorityOctetsReceived."
::= { vgRptrMonPortEntry 13 }
vgRptrPortNormPriOctetRollovers OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of times
that the associated instance of the
vgRptrPortNormPriorityOctets counter has rolled
over.
This two-counter mechanism is provided for those
network management protocols that do not support
64-bit counters (e.g. SNMPv1). Note that
retrieval of these two counters in the same PDU
is NOT guaranteed to be atomic.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aNormalPriorityOctetsReceived."
::= { vgRptrMonPortEntry 14 }
vgRptrPortHCNormPriorityOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of octets
contained in normal priority frames that have
been received on this port. This counter is
incremented by OctetCount for each frame received
on this port which is counted by
vgRptrPortNormPriorityFrames.
This counter is a 64 bit version of
vgRptrPortNormPriorityOctets. It should be used
by Network Management protocols which support
64 bit counters (e.g. SNMPv2).
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aNormalPriorityOctetsReceived."
::= { vgRptrMonPortEntry 15 }
vgRptrPortBroadcastFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of broadcast packets that
have been received on this port. This counter is
incremented by one for each readable frame
received on this port whose destination MAC
address is the broadcast address. Frames
counted by this counter are also counted by
vgRptrPortReadableFrames.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aBroadcastFramesReceived."
::= { vgRptrMonPortEntry 16 }
vgRptrPortMulticastFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of multicast packets that
have been received on this port. This counter is
incremented by one for each readable frame
received on this port whose destination MAC
address has the group address bit set, but is not
the broadcast address. Frames counted by this
counter are also counted by
vgRptrPortReadableFrames, but not by
vgRptrPortBroadcastFrames. Note that when the
value of the instance vgRptrInfoCurrentFramingType
for the repeater that this port is associated
with is equal to 'frameType88025', this count
includes packets addressed to functional
addresses.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aMulticastFramesReceived."
::= { vgRptrMonPortEntry 17 }
vgRptrPortNullAddressedFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of null addressed packets
that have been received on this port. This
counter is incremented by one for each frame
received on this port with a destination MAC
address consisting of all zero bits. Both void
and training frames are included in this
counter.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aNullAddressedFramesReceived."
::= { vgRptrMonPortEntry 18 }
vgRptrPortIPMFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of the number of frames
that have been received on this port with an
invalid packet marker and no PMI errors. A
repeater will write an invalid packet marker to
the end of a frame containing errors as it is
forwarded through the repeater to the other
ports. This counter is incremented by one for
each frame received on this port which has had an
invalid packet marker added to the end of the
frame.
This counter indicates problems occurring in the
domain of other repeaters, as opposed to problems
with cables or devices directly attached to this
repeater.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aIPMFramesReceived."
::= { vgRptrMonPortEntry 19 }
vgRptrPortOversizeFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of oversize frames
received on this port. This counter is
incremented by one for each frame received on
this port whose OctetCount is larger than the
maximum legal frame size.
The frame size which causes this counter to
increment is dependent on the current value of
vgRptrInfoCurrentFramingType for the repeater that
the port is associated with. When
vgRptrInfoCurrentFramingType is equal to
frameType88023 this counter will increment for
frames that are 1519 octets or larger. When
vgRptrInfoCurrentFramingType is equal to
frameType88025 this counter will increment for
frames that are 4521 octets or larger.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aOversizeFramesReceived."
::= { vgRptrMonPortEntry 20 }
vgRptrPortDataErrorFrames OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is a count of errored frames
received on this port. This counter is
incremented by one for each frame received on
this port with any of the following errors: bad
FCS (with no IPM), PMI errors (excluding frames
with an IPM error as the only PMI error), or
undersize (with no IPM). Does not include
packets counted by vgRptrPortIPMFrames,
vgRptrPortOversizeFrames, or
vgRptrPortNullAddressedFrames.
This counter indicates problems with cables or
devices directly connected to this repeater, while
vgRptrPortIPMFrames indicates problems occurring
in the domain of other repeaters.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aDataErrorFramesReceived."
::= { vgRptrMonPortEntry 21 }
vgRptrPortPriorityPromotions OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This counter is incremented by one each time the
priority promotion timer has expired on this port
and a normal priority frame is priority
promoted.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aPriorityPromotions."
::= { vgRptrMonPortEntry 22 }
vgRptrPortTransitionToTrainings OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This counter is incremented by one each time the
vgRptrPortStatus object for this port transitions
into the 'training' state.
This counter may experience a discontinuity when
the value of the corresponding instance of
vgRptrPortLastChange changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aTransitionsIntoTraining."
::= { vgRptrMonPortEntry 23 }
vgRptrPortLastChange OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime when the last of the
following occurred:
1) the agent cold- or warm-started;
2) the row for the port was created
(such as when a device or module was
added to the system); or
3) any condition that would cause one of
the counters for the row to experience
a discontinuity."
::= { vgRptrMonPortEntry 24 }
vgRptrAddrTrack OBJECT IDENTIFIER ::= { vgRptrObjects 3 }
vgRptrAddrTrackRptr
OBJECT IDENTIFIER ::= { vgRptrAddrTrack 1 }
-- Currently unused
vgRptrAddrTrackGroup
OBJECT IDENTIFIER ::= { vgRptrAddrTrack 2 }
-- Currently unused
vgRptrAddrTrackPort
OBJECT IDENTIFIER ::= { vgRptrAddrTrack 3 }
vgRptrAddrTrackTable OBJECT-TYPE
SYNTAX SEQUENCE OF VgRptrAddrTrackEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Table of address mapping information about the
ports."
::= { vgRptrAddrTrackPort 1 }
vgRptrAddrTrackEntry OBJECT-TYPE
SYNTAX VgRptrAddrTrackEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in the table, containing address mapping
information about a single port."
INDEX { vgRptrGroupIndex, vgRptrPortIndex }
::= { vgRptrAddrTrackTable 1 }
VgRptrAddrTrackEntry ::=
SEQUENCE {
vgRptrAddrLastTrainedAddress OCTET STRING,
vgRptrAddrTrainedAddrChanges Counter32,
vgRptrRptrDetectedDupAddress TruthValue,
vgRptrMgrDetectedDupAddress TruthValue
}
vgRptrAddrLastTrainedAddress OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0 | 6))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is the MAC address of the last
station which succeeded in training on this port.
A cascaded repeater may train using the null
address. If no stations have succeeded in
training on this port since the agent began
monitoring the port activity, the agent shall
return a string of length zero."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aLastTrainedAddress."
::= { vgRptrAddrTrackEntry 1 }
vgRptrAddrTrainedAddrChanges OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This counter is incremented by one for each time
that the vgRptrAddrLastTrainedAddress object for
this port changes."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aTrainedAddressChanges."
::= { vgRptrAddrTrackEntry 2 }
vgRptrRptrDetectedDupAddress OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is used to indicate that the
repeater detected an error-free training frame on
this port with a non-null source MAC address which
matches the value of vgRptrAddrLastTrainedAddress
of another active port in the same repeater. This
is reset to 'false' when an error-free training
frame is received with a non-null source MAC
address which does not match
vgRptrAddrLastTrainedAddress of another port which
is active in the same repeater.
For the cascade port, this object will be 'true'
if the 'D' bit in the most recently received
error-free training response frame was set,
indicating the device at the other end of the link
believes that this repeater's cascade port is
using a duplicate address. This may be because
the device at the other end of the link detected a
duplicate address itself, or, if the other device
is also a repeater, it could be because
vgRptrMgrDetectedDupAddress was set to 'true' on
the port that this repeater's cascade port is
connected to."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aLocalRptrDetectedDupAddr."
::= { vgRptrAddrTrackEntry 3 }
vgRptrMgrDetectedDupAddress OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object can be set by a management station
when it detects that there is a duplicate MAC
address. This object is OR'd with
vgRptrRptrDetectedDupAddress to form the value of
the 'D' bit in training response frames on this
port.
The purpose of this object is to provide a means
for network management software to inform an end
station that it is using a duplicate station
address. Setting this object does not affect the
current state of the link; the end station will
not be informed of the duplicate address until it
retrains for some reason. Note that regardless
of its station address, the end station will not
be able to train successfully until the network
management software has set this object back to
'false'. Although this object exists on
cascade ports, it does not perform any function
since this repeater is the initiator of training
on a cascade port."
REFERENCE
"IEEE Standard 802.12-1995, 13.2.4.5.1,
aCentralMgmtDetectedDupAddr."
::= { vgRptrAddrTrackEntry 4 }
vgRptrTraps OBJECT IDENTIFIER ::= { vgRptrMIB 2 }
vgRptrTrapPrefix OBJECT IDENTIFIER ::= { vgRptrTraps 0 }
vgRptrHealth NOTIFICATION-TYPE
OBJECTS { vgRptrInfoOperStatus }
STATUS current
DESCRIPTION
"A vgRptrHealth trap conveys information related
to the operational state of a repeater. This trap
is sent when the value of an instance of
vgRptrInfoOperStatus changes. The vgRptrHealth
trap is not sent as a result of powering up a
repeater.
The vgRptrHealth trap must contain the instance of
the vgRptrInfoOperStatus object associated with
the affected repeater.
The agent must throttle the generation of
consecutive vgRptrHealth traps so that there is at
least a five-second gap between traps of this
type. When traps are throttled, they are dropped,
not queued for sending at a future time. (Note
that 'generating' a trap means sending to all
configured recipients.)"
REFERENCE
"IEEE 802.12, Layer Management, 13.2.4.2.3,
nRepeaterHealth."
::= { vgRptrTrapPrefix 1 }
vgRptrResetEvent NOTIFICATION-TYPE
OBJECTS { vgRptrInfoOperStatus }
STATUS current
DESCRIPTION
"A vgRptrResetEvent trap conveys information
related to the operational state of a repeater.
This trap is sent on completion of a repeater
reset action. A repeater reset action is defined
as a transition to its initial state as specified
in clause 12 [IEEE Std 802.12] when triggered by
a management command.
The vgRptrResetEvent trap is not sent when the
agent restarts and sends an SNMP coldStart or
warmStart trap.
The vgRptrResetEvent trap must contain the
instance of the vgRptrInfoOperStatus object
associated with the affected repeater.
The agent must throttle the generation of
consecutive vgRptrResetEvent traps so that there
is at least a five-second gap between traps of
this type. When traps are throttled, they are
dropped, not queued for sending at a future time.
(Note that 'generating' a trap means sending to
all configured recipients.)"
REFERENCE
"IEEE 802.12, Layer Management, 13.2.4.2.3,
nRepeaterReset."
::= { vgRptrTrapPrefix 2 }
-- conformance information
vgRptrConformance OBJECT IDENTIFIER ::= { vgRptrMIB 3 }
vgRptrCompliances
OBJECT IDENTIFIER ::= { vgRptrConformance 1 }
vgRptrGroups OBJECT IDENTIFIER ::= { vgRptrConformance 2 }
-- compliance statements
vgRptrCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for managed 802.12
repeaters."
MODULE -- this module
MANDATORY-GROUPS { vgRptrConfigGroup,
vgRptrStatsGroup,
vgRptrAddrGroup,
vgRptrNotificationsGroup }
GROUP vgRptrStats64Group
DESCRIPTION
"Implementation of this group is recommended
for systems which can support Counter64."
OBJECT vgRptrInfoDesiredFramingType
MIN-ACCESS read-only
DESCRIPTION
"Write access to this object is not required
in a repeater system that does not support
configuration of framing types."
MODULE SNMP-REPEATER-MIB
GROUP snmpRptrGrpRptrAddrSearch
DESCRIPTION
"Implementation of this group is recommended
for systems which have the necessary
instrumentation to search all incoming data
streams for a particular source MAC address."
::= { vgRptrCompliances 1 }
-- units of conformance
vgRptrConfigGroup OBJECT-GROUP
OBJECTS {
vgRptrInfoMACAddress,
vgRptrInfoCurrentFramingType,
vgRptrInfoDesiredFramingType,
vgRptrInfoFramingCapability,
vgRptrInfoTrainingVersion,
vgRptrInfoOperStatus,
vgRptrInfoReset,
vgRptrInfoLastChange,
vgRptrGroupObjectID,
vgRptrGroupOperStatus,
vgRptrGroupPortCapacity,
vgRptrGroupCablesBundled,
vgRptrPortType,
vgRptrPortAdminStatus,
vgRptrPortOperStatus,
vgRptrPortSupportedPromiscMode,
vgRptrPortSupportedCascadeMode,
vgRptrPortAllowedTrainType,
vgRptrPortLastTrainConfig,
vgRptrPortTrainingResult,
vgRptrPortPriorityEnable,
vgRptrPortRptrInfoIndex
}
STATUS current
DESCRIPTION
"A collection of objects for managing the status
and configuration of IEEE 802.12 repeaters."
::= { vgRptrGroups 1 }
vgRptrStatsGroup OBJECT-GROUP
OBJECTS {
vgRptrMonTotalReadableFrames,
vgRptrMonTotalReadableOctets,
vgRptrMonReadableOctetRollovers,
vgRptrMonTotalErrors,
vgRptrPortReadableFrames,
vgRptrPortReadableOctets,
vgRptrPortReadOctetRollovers,
vgRptrPortUnreadableOctets,
vgRptrPortUnreadOctetRollovers,
vgRptrPortHighPriorityFrames,
vgRptrPortHighPriorityOctets,
vgRptrPortHighPriOctetRollovers,
vgRptrPortNormPriorityFrames,
vgRptrPortNormPriorityOctets,
vgRptrPortNormPriOctetRollovers,
vgRptrPortBroadcastFrames,
vgRptrPortMulticastFrames,
vgRptrPortNullAddressedFrames,
vgRptrPortIPMFrames,
vgRptrPortOversizeFrames,
vgRptrPortDataErrorFrames,
vgRptrPortPriorityPromotions,
vgRptrPortTransitionToTrainings,
vgRptrPortLastChange
}
STATUS current
DESCRIPTION
"A collection of objects for providing statistics
for IEEE 802.12 repeaters. Systems which support
Counter64 should also implement
vgRptrStats64Group."
::= { vgRptrGroups 2 }
vgRptrStats64Group OBJECT-GROUP
OBJECTS {
vgRptrMonHCTotalReadableOctets,
vgRptrPortHCReadableOctets,
vgRptrPortHCUnreadableOctets,
vgRptrPortHCHighPriorityOctets,
vgRptrPortHCNormPriorityOctets
}
STATUS current
DESCRIPTION
"A collection of objects for providing statistics
for IEEE 802.12 repeaters in a system that
supports Counter64."
::= { vgRptrGroups 3 }
vgRptrAddrGroup OBJECT-GROUP
OBJECTS {
vgRptrAddrLastTrainedAddress,
vgRptrAddrTrainedAddrChanges,
vgRptrRptrDetectedDupAddress,
vgRptrMgrDetectedDupAddress
}
STATUS current
DESCRIPTION
"A collection of objects for tracking addresses
on IEEE 802.12 repeaters."
::= { vgRptrGroups 4 }
vgRptrNotificationsGroup NOTIFICATION-GROUP
NOTIFICATIONS {
vgRptrHealth,
vgRptrResetEvent
}
STATUS current
DESCRIPTION
"A collection of notifications used to indicate
802.12 repeater general status changes."
::= { vgRptrGroups 5 }
END
ACC SHELL 2018